Прогнозирование показателей надежности работы оборудования. Методы прогнозирования


^ Вопрос 24. Прогнозирование надежности машин

при помощи структурных схем.

При анализе надежности применяют метод структурных схем. Структурная схема представляет собой условную математическую и физическую модель изделия, по которой прогнозируется надежность в зависимости от уровня безотказности каждой детали и сборочной единицы.

Изделие при использовании структурных схем рассматривается как состоящее из отдельных элементов, предполагая, что отказ каждого элемента является независимым событием.

Различают последовательное, параллельное и комбинированное соединение элементов.

Под системой с последовательным соединением понимают такое соединение, когда отказ хотя бы одного элемента приведет к отказу всей системы.

Рисунок – Система с последовательным соединением элементов.

Вероятность безотказной работы системы n элементов в течение времени t определяют по формуле:

Где Р i (t) - вероятность безотказной работы i-го элемента за время t.

Если элементы равнонадежные, то есть
, то вероятность безотказной работы системы:

.

Вероятность отказа системы в течение времени t равна:

Частота отказов системы f c (t) определяется соотношением:

.

Интенсивность отказов системы:

,

Где
- интенсивность отказов i-го элемента;

Среднее время безотказной работы системы:

.

Система с параллельным соединение м элементов откажет лишь тогда, когда откажут все элементы.

Рисунок – Система с параллельным соединением элементов.

Вероятность безотказной работы системы при параллельном соединении n элементов в течение времени t будет равна:

.

Если элементы равнонадежные, т.е. , то

.

На практике одновременно встречаются оба вида соединения, тогда изделие рассматривается как смешанная система.

Рисунок – Система с комбинированным соединением элементов.

Вероятность безотказной работы в данном случае определяется по формуле:

Надежность системы с последовательным соединением элементов с ростом даже высоконадежных элементов значительно уменьшается.

Повышение надежности системы достигается за счет параллельного соединения элементов, хотя конструктивно в механической системе этот способ не всегда может быть реализован, т.к. увеличивает габариты и массу нефтепромыслового оборудования.

^ Вопрос 25. Резервирование как метод повышения надежности машин.

Одним из основных способов повышения надежности машин является резервирование.

Резервирование - структурная избыточность, предполагающая наличие в системе дополнительных элементов, не являющихся функционально необходимыми (наличие у автомобиля четырехколесных тормозных механизмов при функциональной достаточности двух).

Элемент на рисунке является основным и называется резервируемым. Элементы 2 ... n , предназначены для выполнения функций в случае отказа элемента 1, называются резервными.

Отношение количества резервных элементов к числу основных называется кратностью резерва .

Резервирование с кратностью единица называется дублированием .

Резерв по характеру нагружения делится на:

- нагруженный , при этом резервный элемент работает с той же интенсивностью, что и основной;

- облегченный , когда резервный элемент работает с меньшей интенсивностью, до тех пор пока не отказал основной;

- ненагруженный , в этом случае резервный элемент не используется до тех пор, пока не вышел из строя основной.

По масштабу резервирования различают на:

- общий резерв , при котором используется целая резервная система (дополнительный буровой насос в циркуляционной системе);

Рисунок– Схема общего резервирования системы.

- раздельный резерв , который предусматривает резервирование отдельных элементов системы (всех или только некоторых, наименее надежных, например, запасные втулки или поршни бурового насоса).

По восстанавливаемости отказавших элементов:

- резервирование с восстановлением , при котором восстановление отказавших основных и (или) резервных элементов технически возможно без нарушения работоспособности объекта в целом;

- резервирование без восстановления , при котором восстановление отказавших элементов (основных и (или) резервных) технически невозможно без нарушения работоспособности объекта в целом.

Повышение надежности подверженных старению технических систем в процессе эксплуатации может быть обеспечено только резервированием методами ремонта:

- нагруженным эксплуатационным резервированием , т. е. повышением ремонтопригодности изделия до уровня, исключающего образование критических дефектов, которые могли бы вызвать неремонтопригодное состояние объекта в течение определенной наработки;

- ненагруженным эксплуатационный резервированием - заменой отказавших элементов системы на ремонтные комплекты.

^ Вопрос 26. Роль технологии в обеспечении надежности машин.

Технологический процесс изготовления, сборки и контроля изделия должен с наименьшими затратами времени и средств обеспечить требуемый уровень качества продукции, включая и надежность.

Зависимость показателей надежности от уровня технологического процесса можно представить следующей схемой:

Последовательность технологических операций, применяемые методы и режимы обработки оказывают непосредственное влияние на износостойкость, прочность, коррозионную стойкость, теплостойкость, стабильность механических и физических свойств идругие эксплуатационные показатели изделий.

Совершенство технологического процесса во многом определяет и достигнутый уровень надежности изделия, так как именно в процессе изготовления обеспечивается заложенная конструктором надежность. Технологические методы обеспечения надежности имеют такое же решающее значение как конструктивные и эксплуатационные.

^ Вопрос 27. Понятие надежности технологического процесса.

Надежность технологического процесса - это его свойство обеспечивать изготовление продукции в заданном объеме, сохраняя во времени установленные требования к ее качеству.

Таким образом, технологическая система должна быть работоспособна как по показателям качества, так и по производительности. Свойство надежности технологического процесса отличается от понятия точности и стабильности.

Точность - свойство технологического процесса обеспечивать соответствие поля рассеивания значений показателя качества изготовления продукции заданному полю допуска и его расположению. Точность характеризует технологический процесс в некоторый фиксированный момент времени. Поэтому точность следует рассматривать как составную часть свойства надежности системы.

Стабильность - свойство технологического процесса сохранять показатели качества изготовляемой продукции в заданных пределах в течение некоторого времени. Понятие стабильности характеризует технологический процесс с позиции сохранения в заданных пределах показателей качества продукции. Технологический процесс может быть стабильным, но иметь низкую надежность.

Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изделия, уровень которых зависит от технологии изготовления.

При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. Задача технолога оценить насколько процесс изготовления обеспечивает соблюдение установленных требований, не рассматривая технический уровень самих изделий. Поэтому технологический процесс может обладать высокой надежностью, хотя получаемая при его реализации продукция будет относиться к низкой категории качества, или морально устареть.

Показатели, которыми оценивается надежность технологического процесса, те же, что и для оценки надежности любой системы. При этом под безотказностью данного процесса понимается вероятность нахождения его технологических параметров в допустимых пределах в течение рассматриваемого периода времени.

^ Вопрос 28. Цели и виды испытаний на надежность.

Наиболее достоверную информацию о надежности машин получают в результате испытаний или наблюдений за машинами в процессе их эксплуатации.

В зависимости от целей испытаний их делят на два класса:

Исследовательские испытания

Испытания на надежность.

Исследовательские испытания проводят на стадии проектирования обычно на моделях, макетах или опытных образцах с целью выявления функциональных возможностей техники. Эти испытания необходимы в тех случаях, когда в машине применены новые физические эффекты, процессы, принципы компоновки или новые элементы (например, новые рабочие органы строительных машин).

Испытания на надежность проводят с целью определения и контроля по-казателей надежности машин и их элементов, исследование процессов, приводящих к отказам, выявления наиболее слабых элементов и определения причин их надежности.

^ Виды испытаний на надежность:

1. По уровню составных частей , подвергающихся испытаниям, различают испытание отдельных элементов или машины в целом. При элементных испытаниях отдельно может оцениваться надежность механической передачи, гидропривода, рамы, ходовой части, двигателя и т.п. В этом случае уменьшаются затраты времени и средств, более глубоко проводится обследование, имеются лучшие возможности для согласования и корректировки решений, расширяется унификация элементов. В тоже время нельзя полностью заменить испытание машины испытаниями элементов, так как при этом не учитывается взаимодействие различных узлов, входящих в машину.

2. По срокам проведения испытания могут быть ускоренные и нормальные.

Ускоренные испытания позволяют получить необходимый объем информации о надежности в более короткий срок, чем при нормальных условиях и режимах эксплуатации.

Нормальные испытания позволяют получить необходимую информацию о надежности в такой же срок, как и при работе машины в эксплуатационном периоде.

3. По месту и способу проведения, испытания делятся на:

Стендовые, которые проводят на специальном оборудовании (стендах), позволяющем воспроизводить заданные условия испытания изделия (создавать силовые, температурные и др. виды воздействия, реализовывать требуемый режим функционирования, например, двигателя или рабочего органа), а также обеспечивающем возможность измерения параметров технического состояния объекта и условий испытаний;


  • полигонные испытания, которые выполняются на специальных площадках (полигонах), где имеется возможность имитировать различные сочетания эксплуатационных воздействий в условиях, близких к реальным, а также контролировать условия испытаний и техническое состояние машины;

  • эксплуатационные испытания (наблюдения) дают наиболее полную и достоверную информацию о надежности машин в конкретных эксплуатационных условиях. Проводят их во время нормальной эксплуатации машины.
4. При проведении контрольных испытаний на надежность в ряде случаев рекомендуют их подразделять на испытания на безотказность, ремонтопригодность, сохраняемость и долговечность.

Испытания изделий на безотказность сводятся к контролю вероятности безотказной работы за заданное время или к определению наработки на отказ (средней наработки до первого отказа).

Испытания на ремонтопригодность обычно проводятся для определения среднего времени восстановления или вероятности восстановления работоспособности изделия за заданное время.

Испытания на долговечность предназначаются для контроля среднего или гамма-процентного ресурса.

Испытания на сохраняемость предусматриваются для контроля вероятности сохранения показателей изделия в течение заданного срока.

^ Вопрос 29. Объекты испытания на надежность.

Объектом испытаний могут быть:

образцы , если испытываются свойства материалов, определяющие долговечность изделий (испытания на износостойкость, усталостную прочность, коррозионную стойкость и т. п.);

детали , сопряжения и кинематические пары - для учета влияния конструктивных и технологических факторов на срок службы данных сопряжений (испытание подшипников, зубчатых колес, направляющих, шарниров и т. п.);

узлы машины , когда учитывается взаимодействие отдельных механизмов и элементов конструкции и их влияние на показатели работоспособности (испытание коробок скоростей и редукторов, двигателей, гидроагрегатов, систем управления, отдельных функциональных узлов машины);

машина в целом , когда учитывается взаимодействие всех механизмов и узлов в машине, условия ее эксплуатации и режимы работы (стендовые и эксплуатационные испытания насосов, автомобилей, текстильных машин и др.);

система машин , когда показатели надежности учитывают взаимодействие отдельных машин, связанных в единый производственный комплекс (надежность работы добывающих насосных установок, машин и агрегатов буровой установки, комплексов оборудования для интенсификации добычи нефти и т. п.).

Таким образом, объектом испытания могут быть разнообразные изделия от очень простых, обладающих однородными свойствами и одним или несколькими выходными параметрами, до сложных машин и комплексов, а также специально изготовленные модели (изделие или его часть, выполненные в масштабе) или макеты (упрощенное воспроизведение изделия или его части). Методика испытаний на надежность и их объем зависят от сложности изделия и его специфических особенностей.

^ Вопрос 30. Характеристики, оцениваемые при испытании на надежность.

Выделяют две основные группы характеристик изделия, которые являются объектом измерения и оценки при испытании на надежность.


  1. Характеристики процессов старения и разрушения и определение соответствующей им степени повреждения изделия. Так, при испытании изучается протекание процессов изнашивания, коррозии деформации, усталостных разрушений, и других, которые являются основной причиной потери изделием работоспособности.

  2. Характеристики изменения выходных параметров изделия (точности, КПД, несущей способности и т. д.), выход которых за допустимые пределы приводит к отказу.
Оценка процессов повреждения или выходных параметров изделия зависит от объекта испытания и поставленных задач. Чем сложнее объект испытания, тем большая доля общего объема испытаний приходится на оценку выходных параметров (рисунок).

При испытании материалов исследуются те процессы, которые приводят к его разрушению или изменению свойств (рисунок).

Для деталей и сопряжений кроме процессов повреждения определяются, как правило, и их выходные параметры - точность движения (вращения), изменение взаимного положения (износ сопряжения), коэффициент трения и др.

Для механизмов узлов и машин основным объектом измерения являются их выходные параметры. Процессы повреждения уже исследовались и оценивались при испытании отдельных элементов и узлов машины. При испытании всей машины процессы старения обычно регистрируются лишь для наиболее ответственных элементов, в основном определяющих работоспособность сложного изделия, например износ цилиндров двигателя, направляющих станка и т. п.

Задачи испытания и объекты измерения должны быть указаны в разрабатываемых для каждого случая методике и плане испытаний.

^ Вопрос 31. Причины отказа изделия раньше установленного ресурса.

В процессе эксплуатации изделия нередко отказы возникают раньше, чем это установлено ресурсом, что приводит к неожиданному прекращению работы машины или к снижению ее эффективности.

Различные факторы, действующие на машину при эксплуатации, связанные с климатическими, биологическими условиями и внешними воздействиями, создают комплекс причин для ускорения процессов старения и разрушения.

Так, повышенная влажность среды, колебания температуры, загрязненность атмосферы, ветер, акустический шум, солнечная радиация, плесень, бактерии, насекомые, грызуны - вот неполный перечень тех факторов, которые приходится учитывать при оценке возможности отказа изделия в различных условиях эксплуатации.

Чем большие воздействия оказывает на машину среда, тем выше вероятность отказа, которая резко возрастает при работе изделия в несвойственной ему обстановке. В этих случаях надо оценивать не вероятность отказа, а вероятность возникновения недопустимой ситуации.

При возникновении преждевременных отказов часто создается конфликтная ситуация между конструкторами, технологами и эксплуатационниками. Чтобы найти виновника и источник возникновения отказа необходимо проанализировать причины преждевременного отказа, т.е. обстоятельства, которые обусловили внезапность его возникновения.

Рассмотрим основные критерии для решения вопроса об ответственности той или иной службы за возникновение отказа.

Таблица 5 - Категории преждевременных отказов

Если отказ возник при нормальных условиях эксплуатации изделия без технологических дефектов, то возникновение такого отказа - допустимое событие, если число случаев отказа находится в регламентированных пределах.

Если же отказ связан с нарушением ТУ при изготовлении и эксплуатации изделий или неправильными расчетами при проектировании изделия, то соответствующие подразделения должны вносить коррективы в свою деятельность - пересмотреть методы расчета и прогнозирования надежности, повысить надежность технологического процесса, усовершенствовать методы эксплуатации и ремонта машины и т. п.

Большую информацию о преждевременных и недопустимых отказах, возникающих в процессе эксплуатации, могут дать рекламации потребителя, если они подвергаются тщательной обработке и анализу.

^ Вопрос 32. Периоды эксплуатации машин.

Под эксплуатацией машины понимают весь срок еесуществования от выпуска заводом-изготовителем до снятия с эксплуатации, который может состоять из отдельных периодов (табл.), во время которых работоспособность машины либо уменьшается, либо восстанавливается.

Таблица 4. Периоды эксплуатации машин.


Период эксплуатации

Работоспособность машин

I.Простои машины

Консервация и хранение

Транспортировка

Проверка работоспособности (диагностика) или наладка (подготовка к работе)

Простои (ожидание работы или ремонта)


Как правило, изменяется незначительно

II. Работа машины

Работа при нормальных режимах и условиях эксплуатации

Работа при повышенных режимах

Работа при пониженных режимах

Работа при проверках и испытаниях


Снижается

III. Ремонт машины

Плановые периодические ремонты

Техническое обслуживание

Аварийные ремонты


Восстанавливается

От структуры процесса эксплуатации, т. е. от чередования и длительности отдельных периодов, во многом зависит выбор показателей надежности, которые отражают требования к безотказности изделия в период его работы и возможность длительного поддержания работоспособности изделия.

Кроме того, характер работы машины во времени определяет период, в течение которого следует оценивать ее безотказность. На фактические показатели надежности существенное влияние оказывают условия и методы эксплуатации машины, применяемая система ремонта и технического обслуживания, квалификация персонала.

^ Вопрос 33. Влияние системы обслуживания на надежность машин.

Потеря машиной работоспособности в процессе ее эксплуатации - неотвратимый процесс, протекающий в зависимости от конструкции машины и условий ее использования с большей или меньшей интенсивностью.

Предельным состоянием изделия будет такое, при котором вероятность выхода его параметров за допустимые пределы достигнет установленного уровня. Начиная с этого момента, изделие нуждается в восстановлении утраченной работоспособности.

Это достигается путем ремонта узлов и элементов машины, заменой износившихся частей запасными, регулировкой механизмов и другими методами, которые для краткости будем называть одним термином - ремонт.

От системы ремонта и ТО, которая определяет периодичность и объемы ремонтных работ, зависят показатели надежности изделия. Эта система для любой машины строится, как правило, на основании следующих принципов:

Для удобства эксплуатации машины и планирования ремонта предусматриваются периодические остановки машины для ее ремонта и профилактических мероприятий через заданные, как правило, равные промежутки времени (или после выполнения заданного объема работы);

Объемы периодических ремонтных работ и соответственно длительность простоя машины в ремонте неодинаковы, так как должно быть обеспечено восстановление работоспособности машины при протекании разнообразных процессов старения.

При разработке системы ремонта и технического обслуживания необходимо учитывать следующее:

В каждой машине, как правило, имеются детали и элементы с широким диапазоном их потенциальных сроков службы (наработки) до отказа;

Современные технические возможности позволяют осуществить ремонт и восстановить утраченную работоспособность для любых отказов машины (кроме особых случаев - например, гибели изделия в результате катастрофы); вопрос может идти лишь о больших или меньших затратах времени и средств;

Система ремонта и технического обслуживания имеет как общие для данного типа машин черты (например, характер и последовательность периодических ремонтов), так и параметры, отражающие уровень надежности машин данного назначения (например, время до капитального ремонта), основные параметры системы ремонта связаны с показателями надежности машины;

Система ремонта назначается для машины в целом, поэтому вероятность отказа отдельных узлов и механизмов машины и их регламентированные сроки службы (наработки) должны назначаться с учетом периодичности ремонтов, принятой данной системой;

При оценке работоспособности машины деление деталей и узлов на ремонтируемые и неремонтируемые не обязательно; для восстановления работоспособности машины неважно, заменяется или ремонтируется деталь, важно лишь, чтобы замененная или отремонтированная деталь отвечала техническим условиям;

При разработке технологических процессов ремонтных работ необходимо учитывать их влияние на качественные показатели отремонтированных изделий.

^ Вопрос 34. Методы повышения надежности нефтепромыслового оборудования

Методы и возможности по повышению надежности машин весьма разнообразны и связаны со всеми этапами проектирования, изготовления и эксплуатации машин. Проводимые в этой области мероприятия разделяются на несколько генеральных направлений.

1. Повышение сопротивляемости машин внешним воздействиям:

Создание прочных жестких, износостойких узлов за счет их рациональной конструкции;

Применение материалов с высокой прочностью, износостойкостью, антикоррозионностью, теплостойкостью;

Уменьшение нагрузок, действующих на механизм;

Применение упрочняющей технологии;

Исключение влияния технологической наследственности и др.

2. Изоляция машин от вредных воздействий.

Установка машины на фундамент,

Защита поверхностей от запыления и загрязнения,

Создание для машин специальных условий по температуре и влажности,

Применение антикоррозийных покрытий и т. д.

3. Создание оптимальной конструкции машины: с позиций надежности оптимальной будет такая конструкция машины и ее элементов, когда с наименьшими затратами средств достигается требуемая продолжительность работы отдельных узлов, механизмов и машины в целом при заданной безотказности и регламентированных затратах на ремонт и техническое обслуживание.

4. Применение автоматики для повышения надежности машин.

Проблема надежности машин возникла в первую очередь в связи с развитием автоматизации, с необходимостью обеспечить бесперебойную работу и взаимодействие механических, электрических, гидравлических и других устройств. Создание самонастраивающихся и саморегулируемых машин позволяет машине не только обладать способностью выполнять заданную работу, но и осуществлять свои функции длительное время, не опасаясь как внешних воздействий, так и процессов, происходящих в самой машине.

5. Создание машин с регламентированными показателями надежности. Под регламентацией показателей надежности понимается, знание законов распределения сроков службы (наработки), законов распределения скоростей изнашивания (или других процессов старения), характеристик начального состояния машины и всех тех данных, которые определяют область работоспособности машины и вероятность нахождения машины в заданном состоянии.

^ Вопрос 35. Направления дальнейших исследований в области надежности машин

Проблемы, которые являются первоочередными для дальнейших исследований по надежности машин и представляют самостоятельные направления в данной области:


  1. ^ Разработка моделей параметрических отказов. Развитие идей о взаимодействии машины со средой, учет обратных связей «процессы - выходные параметры машины», оценка взаимодействия параметров и других особенностей потери работоспособности сложных систем позволит разработать более совершенные модели отказов разнообразных машин и изделий. Эти модели должны учитывать внутренние связи и внешние воздействия, характерные для данной категории машин, давать основу для разработки алгоритмов по оценке надежности сложных изделий.

  2. ^ Динамика медленных процессов должна изучать те изменения в узлах и элементах машины, которые происходят в течение длительных промежутков времени. Эти процессы являются причиной отказов машины и изменения ее состояния со временем. Можно использовать фундаментальные принципы динамики машин и теории автоматического управления. При этом в первую очередь надо учитывать большую инерционность систем, возрастание периодичности внешних воздействий, взаимодействие обратимых и необратимых процессов, малую скорость процессов.

  1. ^ Прогнозирование надежности сложных систем. Для различных категорий машин необходимо дальнейшее развитие и воплощение идей о прогнозировании надежности на основе моделей отказов, которые базируются на закономерностях процессов повреждения (физики отказов) с учетом их вероятностной природы. Перспективным является использование методов статистического моделирования, когда учитываются вероятностные характеристики режимов и условий работы машины, внешних воздействий и протекающих процессов старения. Особенно актуальны еще недостаточно разработанные методы прогнозирования надежности с учетом процессов изнашивания, которые являются основной причиной отказов многих машин. Особую проблему представляет изучение надежности комплексов «машина - автоматическая система управления», так как взаимодействие механических и электронных систем порождает ряд новых аспектов теории надежности.

  2. ^ Нормирование показателей надежности. Разработка нормативов для показателей безотказности и долговечности машины, регламентация скоростей процессов, предельных состояний машины и ее элементов, запасов надежности, скорости изменения выходных параметров - необходимое условие для эффективного использования машин.
Базой является экономический фактор, оценивающий последствия отказов и выступающий в качестве критерия для оптимизации требований к показателям надежности.

  1. ^ Влияние износа на динамические параметры машины. Для многих машин динамика лимитирует (ограничивает) допустимые величины износов и ресурс изделия. В уравнениях динамики присутствуют показатели, зависящие от времени и имеющие случайную природу. Раскрытие этих закономерностей позволит объяснить многие сложные явления, связанные с изменением выходных параметров машины во времени, с отказами функционирования из-за разрушения ее элементов. Последнее часто является следствием возрастания динамических нагрузок в машине при износе ее элементов.

  2. ^ Разработка систем информации о надежности из сферы ремонта необходима для управления надежностью, оценки тенденций ее изменения и достигнутого уровня. Чем выше требования к безотказности изделий, тем меньше информации поступает из сферы эксплуатации. Необходимо создание специальных систем информации о степени повреждения элементов ремонтируемых изделий, не достигнувших предельного состояния и не имеющих отказов, для недопущения которых и производится их ремонт. Этот позволит оценить степень использования потенциальных возможностей изделия по надежности и обоснованно назначить ресурс для машины и ее агрегатов.

  3. ^ Испытание на надежность сложных систем. Основой для разработки методик испытаний сложных систем являются развитие методов испытания в сочетании с прогнозированием и использованием заданной информации, разработка алгоритмов по оценке надежности с учетом постоянно поступающей информации о состоянии изделия, выявление экстремальных реализаций потери изделием работоспособности, сочетание испытания со статистическим моделированием, оценка и прогнозирование ведущих процессов старения.

  4. ^ Анализ надежности технологического процесса. Технологический процесс должен обеспечить устойчивое формирование всех параметров изделия, которые определяют его надежность. Анализ структуры технологического процесса, применяемых методов и режимов обработки, методов контроля, учет остаточных и побочных явлений, связанных с обработкой и сборкой изделий, оценка технологической наследственности, использование принципов адаптации и саморегулирования позволят более эффективно решения обеспечивать надежность изделий при производстве.
^ 9. Оптимизация системы ремонта технического обслуживания. Выявление рациональных методов ремонта и Т. О. связано с их оптимизацией, в первую очередь, по критерию экономичности, что требует учета вероятностных процессов потери машиной работоспособности и реальных возможностей по ее восстановлению. Правильная организация системы ремонта и обслуживания может при тех же затратах значительно повысить эффективность использования сложных технических устройств и машин.

^ 10. Использование автоматики для обеспечения надежности машин. Создание кибернетических систем, предотвращающих вредные последствия процессов, протекающих в машине, воплощение принципа адаптации и саморегулирования не только для рабочих функций машины, но и для сохранения ее качественных показателей.

Широкий фронт исследовательских и конструкторских работ в области надежности машин являются залогом обеспечения с минимальными затратами времени и средств необходимого уровня надежности машин и изделий.

Для оценки приближения эмпирического распределения к теоретическому используется критерий согласия Романовского, который определяется по формуле:

где - критерий Пирсона;

r - число степеней свободы.

Если выполняется условие , то это дает основание для утверждения, о возможности принятия теоретического распределения показателей надежности за закон данного распределения.

Критерий Колмогорова позволяет оценить справедливость гипотезы о законе распределения при малых объемах наблюдений случайной величины

где D - максимальная разность между фактической и теоретической накопленными частотами случайной величины.

На основе специальных таблиц определяют вероятность Р того, что если конкретный вариационный признак распределен по рассматриваемому теоретическому распределению, то из-за чисто случайных причин максимальное расхождение между фактическими и теоретическими накопленными частотами будет не меньшим, чем фактически наблюдаемое.

На основе вычисленной величины Р делают выводы:

а) если вероятность Р достаточно велика, то гипотезу о том, что фактическое распределение близко к теоретическому, можно считать подтвержденной;

б) если же вероятность Р мала, то гипотеза отвергается.

Границы критической области для критерия Колмогорова зависят от объема выборки: чем меньше число результатов наблюдений, тем выше необходимо устанавливать критическое значение вероятности.

Если число отказов при наблюдении составило 10-15, то , если больше 100, то . Однако необходимо отметить, что при больших объемах наблюдений лучше пользоваться критерием Пирсона .

Критерий Колмогорова значительно проще других критериев согласия, поэтому он находит широкое применение в исследовании надежности машин и элементов.

Вопрос 22. Основные задачи прогнозирования надежности машин.

Для определения закономерностей изменения технического состояния машины в процессе работы выполняется прогнозирование надежности машин.

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные классы задач прогнозирования надежности машин могут быть сформулированы следующим образом:

    Предсказание закономерности изменения надежности машин в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

    Оценка надежности проектируемой машины до того, как она будет изготовлена. Эта задача возникает на стадии проектирования.

    Прогнозирование надежности конкретной машины (узла, агрегата) на основании результатов изменения ее параметров.

    Прогнозирование надежности некоторой совокупности машин по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства техники.

5. Прогнозирование надежности машин в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой).

Специфика отрасли строительного машиностроения предполагает точность решения задач прогнозирования с погрешностью не более 10-15 % и использование методов прогнозирования, позволяющих получить решение задач в кратчайшие сроки.

Методы прогнозирования надежности машин выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:

Методы экспертных оценок;

Методы моделирования, включающие физические, физико-математические и информационные модели;

Статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б той же машины, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполя­ции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены законо­мерности изменения параметров надежности машин во времени.

Вопрос 23. Этапы прогнозирования надежности машин.

При прогнозировании надежности машин придерживаются следующей последовательности:

    Проводят классификация деталей и сборочных единиц по принципу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливают более высокие требования безотказности.

    Формулируют понятия отказа деталей и сборочных единиц проектируемой системы. При этом необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирают метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

    Составляют структурную схему изделия, включающую основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, расположенные по уровням в порядке их подчиненности, и отражающую связи между ними.

    Рассматривают все детали и сборочные единицы, начиная с верхнего уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует определять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состояний;

Составляют модели физических процессов, приводящих к отказам,

Устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др).

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета.

7. Строят при необходимости графики зависимости показателей надежности от времени, на основании которых сравнивают надежности отдельных деталей и сборочных единиц, а также различных вариантов структурных схем системы.

8. Hа основании проведенного прогнозирования надежности делают вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатывают мероприятия, направленные на повышение надежности рассчитываемой системы.

Вопрос 24. Прогнозирование надежности машин

Прогнозирование надежности технического объекта – это научное направление, изучающее методы предсказания технического состояния объекта при воздействии на него заданных факторов.

Прогнозирование применяется для определения остаточного ресурса систем, их технического состояния, числа ремонтов и технических обслуживаний, расхода запасных частей и решения других задач в области надежности.

Прогнозирование показателей надежности может производиться по разнообразным параметрам (например, по усталостной прочности, динамике процесса изнашивания, по виброакустическим параметрам, содержанию элементов износа в масле, по стоимости и трудовым затратам и т.д.).

Современные методы прогнозирования подразделяют на три основные группы.

1. Методы экспертных оценок, сущность которых сводится к обобщению, статистической обработке и анализу мнений специалистов. Последние обосновывают свою точку зрения, используя информацию об аналогичных объектах и анализируя состояние конкретных объектов.

2. Методы моделирования, базирующиеся на основных положениях теории подобия. Эти методы заключаются в формировании модели объекта исследования, проведении экспериментальных исследований модели и в пересчете полученных значений с модели на натуральный объект. Например, путем проведения ускоренных испытаний сначала определяют долговечность изделия в форсированных (жестких) условиях эксплуатации, а затем с помощью соответствующих формул и графиков определяется долговечность в реальных условиях эксплуатации.

3. Статистические методы, из которых наибольшее применение находит метод экстраполяции. В его основе лежат закономерности изменения прогнозируемых параметров во времени. Для описания этих закономерностей подбирают по возможности простую аналитическую функцию с минимальным числом переменных.

Так, путем статистической обработки определяют параметр, который служит диагностическим признаком технического состояния двигателя, например, прорыв картерных газов или расход масла. По этому параметру прогнозируется остаточный ресурс. При этом следует учитывать, что действительный ресурс может колебаться вокруг полученной величины.

Основными причинами неточного прогнозирования являются недостаточная полнота, достоверность и однородность информации (однородной называется информация об одинаковых изделиях, эксплуатируемых в одинаковых условиях), низкая квалификация прогнозиста.

Эффективность прогнозирования устанавливают по изменению показателя надежности в результате внедрения рекомендованных средств ее повышения.

Как отмечалось выше по основным принципам расчета свойств, составляющих надежность, или комплексных показателей надежности объектов различают:

Методы прогнозирования,

Структурные методы расчета,

Физические методы расчета,

Методы прогнозирования основаны на использовании для оценки ожидаемого уровня надежности объекта данных о достигнутых значениях и выявленных тендециях измезнения показателей надежности объектов-аналогов. (Объекты-анагалоги – это объекты аналогичные или близкие к рассматриваемому по назначению, принципам действия, схем­но-конструктивному построению и технологии изготовления, элементной базе и применяемым мате­риалам, условиям и режимам эксплуатации, принципам и методам управления надежностью).

Структурные методы расчета основаны на представлении объекта в виде логической (структурно-функциональной) схемы, описывающей зависимость состояний и переходов объекта от состояний и переходов его элементов с учетом их взаимодействия и выполняемых ими функций в объекте с последующими описаниями построенной структурной модели адекватной мате­матической моделью и вычислением показателей адежности объекта по известным характеристикам надежности его эле­ментов.

Физические методы расчета основаны на применении математических моделей, описывают их физические, химические и иные процессы, приводящие к отказам объектов (к дости­жению объектами предельного состояния), и вычислении показателей надежности по известным параметрам (загруженнос­ти объекта, характеристикам примененных в объекте веществ и материалов с учетом особенностей его конструкции и техиолопей изготовления.

Методы расчета надежности конкретного объекта выбирают в зависимости от: - целей расчета и требовалий к точности определения показателей надежности объекта;

Наличия и/или возможности получения исходной информации, необходимой для применения определенного метода расчета;

Уровня отработанности конструкции и технологии изготовления объекта, системы его технического обслуживания и ремонта, позволяющего применять соответствующие расчетные модели надежности. При расчете надежности конкретных объектов возможно одновременное применение различных методой, например, методов прогнозирования надежности электронных и электротехнических элементов с последующим использованием полученных результатов в качестве исходных данных для расчета надежности объекта в целом или его составных частей различными структурными методами.

4.2.1. Методы прогнозирования надежности

Методы прогнозирования применяют:

Для обоснованпя требуемого уровня надежности объектов при раработке технических заданий и/или опенки вероятности достижения заданных показателей надежности при проработке технических предложений и анализе требований технического задания (контракта);

Для ориентировочной оценке ожндемого уровня надежностн объектов на ранних стадиях нх проектнрования, когла отсутствует необходимая информация для применения друтнх методов расчета надежности;

Для расчета интенсивности отказов серийно выпускаемых и новых электронных и зсзектротехннческих злементов разных типов с учетом уровня нх нагруженности, качества изготовления, областей применения аппаратуры, в которой используются элементы;

Для расчета параметров типовых задач и операций технического обслуживания и ремонта объектов с учетом конструктивных характеристик обьекта, определяющих его ремонтопригодность.

Для прогнозирования надежности объектов применяют:

Методы эвристического прогнозирования (экспертной оценки);

Мелолы прогнозирования по статистическим моделям;

Комбинированные методы.

Методы эвристического прогнозирования основаны на статистический обработке независимых оценок значений ожидаемых показателей надежности разрлбатываемого объкта (иидивидуалыных прогнозов), даваемых группой квалифицированных (экспертов) на основе предоставленной им информации об объекте, услониях евго эксплуатации, планируемой технологии изготвления и другнх данных, имеющихся в момент проведения оценки. Опрос экспертов и статистическую обработку индивидуальных прогнозов показателей надежности проводят общепринятыми при экспертной оценке любых показателей качества методами (например, метод Дельфи).

М ет о д ы п р о г н о з и р о в а н и я п о статистическим моделям основаны на экстра- или интерполяции зависимостей, описывающих выявленные тенденции изменения показателей надежности объектов-аналогов с учетом их конструктивно-технологических особенностей и других факторов, информация о которых для разрабатываемого объекта изнесгна или может быть получена в момент проведения оценки. Модели для прогнозирования строят по данным о показателях надежности и параметрах объектов-аналогов с использованием известных статистических методов (многофакторного регрессионного анализа, методов статистической классификации и распознания образов).

Комбинированные методы основаны на совместном применении для прогнозирования надежности методов прогнозирования по статистическим моделям и эвристических методов с последующим сравнением результатов. При этом эвристические методы используют для оценкеи возможности экстраполяции статистических моделей и уточнения прогноза по ним показателей надежности. Применение комбинированных методов целесообразно в случаях, когда естъ основания ожидать качественных изменений уровня належности объектов, не отражаемых соответствующими статистическими моделями, или при недостаточном для применения только статистичеких методов числе объектов-аналогов.

Улучшение как фактор, даже важнейший, непрерывного совершенство- вания продукции, тем не менее не может быть реализован без соответст- вующей системы менеджмента качества. Само содержание улучшения и его значимость также зависят от уровня системы. Чтобы правильно, с минималь- ными погрешностями, прогнозировать динамику развития методов улучше- ния качества, необходимо рассмотреть динамику развития систем управле- ния качеством, обеспечивающих соответствующие уровни улучшения.

Следует, прежде всего, отметить, что общепризнанной систематизации,

а тем более классификации, систем менеджмента качества пока не существу-

ет. Многие и зарубежные, и отечественные авторы работ по качеству предла- гают свои методы систематизации, с которыми можно соглашаться или предлагать собственные. Практически все признают, что каждая новая сис- тема менеджмента качества не создается на новом месте, а в результате на- копления новых средств и методов управления реформируется в новую сис- тему, в максимальной степени соответствующую действующей на тот мо- мент экономике ведущих стран мира. В результате образуется система работ по качеству более высокого типа. Совершенно естественно, что новая систе- ма менеджмента качества окончательно складывается практически на пике действующих форм экономики.

Прослеживая историю развития экономики, можно выделить несколько этапов организации работ по качеству .

Первый этап – индивидуальная форма организации работ. Она харак-

теризуется тем, что один работник решает самостоятельно все вопросы соз- дания, изготовления и реализации продукции, неся при этом всю ответствен- ность за ее качество. Такая форма соответствует домануфактурному ремес- ленному производству, а также характерна для современной индивидуальной трудовой деятельности, когда масштабы производственного процесса не тре- буют глубокого разделения труда.

Эта начальная форма труда при внимательном рассмотрении обнаружи-

вает все элементы современного процесса управления качеством:

Выявление потребности,

Соответствие продукции потребностям,

Требуемая последовательность и точность изготовления задуманной продукции,

Периодический контроль своей работы,

Внесение корректировок в процесс (обратная связь) и т. д.

Второй этап – цеховая форма работ. Эта форма работ вызвана перехо-

дом к мануфактурной организации производства. Для нее уже характерно разделение функций и ответственности за качество.

Руководители или владельцы цеха определяли так называемую полити- ку в области качества, определяли вид продукции, который пользуется наи- большим спросом, и требования к ней. Мастер организовывал производство, устанавливал последовательность и содержание (т. е. технологию) работ. За качество работы ответственность нес работник, а мастер – за организацию работ.

С ростом масштабов производства формируется самостоятельная служба контроля, а при производстве оружия – еще и «государев надзор». Под влия- нием развития контрольной функции стало формироваться впечатление, что

контроль – главное, если не единственное средство достижения высокой ка- чества продукции. Происходит некая фетишизация роли контроля в меха- низме управления качеством.

Цеховая форма контроля существует и в наше время на многих предпри-

ятиях малого бизнеса.

Третий этап – индустриальная форма работ. Эта форма связана с даль-

нейшим ростом масштаба производства, углублением его концентрации и специализации.

На этом этапе происходит выделение функции разработки и проектиро-

вания новой продукции в самостоятельные профессиональные подразделения или организации. Для третьего этапа характерно усиление роли и значения таких звеньев производства, как проектирование, испытания, технологиче- ская подготовка. Вместе с этим эти направления работ еще не рассматрива- ются как звенья единой цепи в общей системе работ по качеству.

В области работ по качеству происходит процесс большего углубления в техническом разделении труда на ряд частных функций, выполняемых раз-

личными в профессиональном отношении группами подразделений и людей.

Техническое разделение труда – это не только дифференциация, но и ин-

теграция производственного, трудового процесса.

Усиливаются контакты с поставщиками сырья, материалов и комплек- тующих изделий. В работу по качеству втягивается все большее число служб и участников.

Вместе с этим индустриальной форме работ также присуще несогласо- ванность, нечеткое взаимодействие между конструкторскими и технологиче- скими службами, производством и службой технического контроля и т. п.,

что служит причиной многих недоразумений при обеспечении качества, пря- мо ухудшая его, замедляя темпы создания и освоения новых видов продук- ции, снижая эффективность работ по качеству.

Эта форма работ по качеству превалировала в первой половине прошло-

го столетия. Однако за рубежом с середины 60-х годов под влиянием усили- вающей конкуренции на рынке проблемы качества стали обсуждаться не только в производственных подразделениях, но и на уровне руководства фирм, которое стало понимать решающее значение качества в благополучии фирмы. В ряде работ А. Фейгенбаума (США) просматривается обеспокоен- ность, что забота о качестве, разложенная на всех, обезличивается, может стать ничьей .

В Японии складывается новый подход к качеству, основанный на идее участия всего персонала в контроле собственной деятельности, изучении и развитии методов улучшения качества.

В России на многих предприятия разрабатывались новые подходы к ор-

ганизации работ по качеству, отличные от традиционных (БИП, НОРМ, КА-

НАРСПИ и др.).

Развитие производства и возрастающая роль качества продукции требо- вали сделать следующий шаг в развитии форм организации работ по качест- ву с целью усиления взаимодействия всех подразделений и служб, обеспе-

чивающих качество.

Четвертый этап – системная организация работ по качеству. К 80-м годам 20-го столетия и у нас, и за рубежом все явственнее ощущалось, что

контроль качества даже при всемерном его усилении и расширении масшта- бов, увеличении числа объектов и участников не может существенным обра- зом изменить в лучшую сторону состояние дел с качеством продукции. Кон-

троль, даже всеобщий, не мог обеспечить решения многих вопросов, кото- рые все острее ставила практика: как меняются требования к качеству с раз- витием технического прогресса, как качество зависит от платежеспособного

спроса, как добиться непрерывного обновления качества и др.

Для того чтобы объединить все возможности улучшения качества в еди-

ный комплекс, нужно было глубже проникнуть природу качества, понять, ка-

кие силы и в каком порядке участвуют в процессе создания, изготовления и обновления продукции, найти закономерности создания системы менедж- мента гарантирующей непрерывное изменение качества.

Так постепенно, с середины 80-х годов формировалась всеобщая система

управления качеством (TQM), вобравшая себя все лучшее, что было в пред- шествующих системах менеджмента качества, и обогащенная стандартами ИСО серии 9000 и новыми подходами, изложенными в принципах менедж- мента качества .

В отдельных работах создание систем управления качеством отсчи-

тывается от конца 19-го века, когда в производстве началось применение стандартов, метрологии, появилась конвейерная сборка. К этому же периоду

относятся работы Ф. Тэйлора по внедрению допусков в конструкторскую до-

кументацию, которые заложили научные основы управления.

Польский ученый К. Лисецки в 1997 году предложил интересную гра- фическую схему эволюции подходов к управлению качеством (рис. 5.1). В этой схеме полностью отсутствуют разработки советских специалистов и ученых в период 1955-1978 годов. Исторически было бы правильно схему Лисецки дополнить этими разработками, что и было сделано А. Гличевым в работе .

Какие дополнения в приведенной схеме появятся в дальнейшем? Уже се-

годня можно выделить два перспективных фактора: методы робастного пла- нирования Тагути и управление знаниями (резкое увеличение доли умствен- ного труда персонала предприятий). На наш взгляд, именно в этих направ- лениях будут развиваться системы управления качеством.

Стратегия TQM (И. Окланд)

«Реинжиниринг» бизнес-процесса (М. Хаммер)

Системы менеджмента качества,

системы обеспечения качества

Движение к тотальному качеству

Циклы качества (К. Исикава)

«Ноль дефектов» (Ф. Кросби,

Т. Катарбински, Б. Дубовиков, И. Халпин)

Японский подход к качеству (CWQC) (К. Исикава, Г. Тагути)

Система управления качеством

(А. Фейгенбаум)

Статистическийц контроль процесса

(Э. Деминг, И. Джуран)

Применение простых статистических методов (Э. Деминг)

Первое применение математических моделей (В. Шухарт)

Идеальный тип чиновничества (М. Вебер)

Теория администрирования (Х. Файлор)

Пространственно-временное распределение (Ф. и Л. Гилберт, Г. Форд)

Научные основы управления (Ф. Тейлор, К. Адамецки)

Рис. 5.1. Эволюция подходов к управлению качеством

Практика ведущих фирм и предприятий показывает, что единый ком- плекс требований к качеству продукции должен обеспечиваться на всех эта- пах жизненного цикла продукции с непрерывным ее обновлением. В работе

Приведена интересная схема механизма управления качеством (рис.5.2,

сплошные линии связи), в который входят следующие блоки:

Сфера производственного и личного потребления,

Исследование характера и объема новых потребностей рынка,

Маркетинг,

Конструкторская и технологическая подготовка производства новой продукции,

План по качеству,

Качество изготовленной продукции,

Информация о фактическом качестве,

Сравнение информации,

Выработка мероприятий по устранению причин отклонений качества,

Реализация мероприятий по поддержанию качества или его повыше-

Вместе с этим, по нашему мнению в рассматриваемую схему целесооб-

разно внести самостоятельный блок «Улучшение качества», под которым по- нимаются идеи любых сотрудников предприятия по улучшению продукции или процессов. В этом механизме (рис. 5.2, пунктирные линии) предложения по улучшению качества подаются в виде идей в блок «Конструкторская и технологическая подготовка», где они или отвергаются, или в виде техни- ческоих предложений попадают в блоки «Исследование …» и «Марке- тинг». В этих блоках оценивается интерес к улучшениям потребителей и вносятся возможные коррекции по предложению. В блоке «Конструкторская и технологическая подготовка» эти скорректированные предложения преоб- разуются в технико-экономические решения и поступают в блок «План по качеству», откуда направляются в блок «Производство (качество изготов- ленной продукции)» в виде изменений в конструкторской и технологиче- ской документации. Далее – по схеме сравнения фактического и запланиро- ванного качества.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «stroimremdom.ru» — Строим и ремонтируем